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Management and Outcomes of Acute Kidney Injury due to 
Burns: A Literature Review

Anjay Khandelwal, MD1, Matthew Satariano, BS2, , Kush Doshi, BS3, , Pushan Aggarwal, MBBS3, ,  
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ABSTRACT 
Acute kidney injury (AKI), a common and severe complication following burn injuries, presents a 
significant challenge due to its broad clinical manifestations and diverse etiologies. AKI, previously known 
as acute renal failure, can present abruptly following burns or thermal injuries, causing detrimental health 
outcomes such as progressive kidney dysfunction, increased hospital length of stay, and requirement of 
renal replacement therapy (RRT). AKI affects the maintenance of homeostasis of fluid and electrolytes, 
elimination of metabolic wastes and byproducts, and acid–base balance. Aggressive nutritional support 
is particularly necessitated in burn patients to prevent protein-energy wasting and a negative nitrogen 
balance. Understanding the pathogenesis of AKI in burns and improving its prevention and early diagnosis 
are active areas of research in this field. Despite the potential benefits, the optimal timing and threshold 
for RRT initiation in burn patients with AKI remain unclear, warranting further studies. Ongoing 
investigations focus on refining RRT techniques, evaluating biomarkers for early detection of AKI, and 
exploring adjunctive therapies to enhance renal recovery. The aim of this study is to review the etiology, 
diagnostic tools, and interventions that improve outcomes associated with AKI in burn-related settings.

Lay Summary 
Acute kidney injury occurs in nearly one-quarter of people with severe burns and leads to increased mortality 
rates. Burn injuries can be associated with numerous complications, such as hypermetabolic response, 
hypovolemia, hypotension, and sepsis, and involves early burn- and late burn-related complications. 
Validated metrics for classifying the extent of burn injuries, such as the Abbreviated Burn Severity Index 
on admission, Sequential Organ Failure Assessment Score on admission, Modified Marshall Score, baseline 
blood urea nitrogen, and serum creatinine all serve to discriminate the risk of acute kidney injury. With no 
current consensus on predictive energy equations or ideal nutritional goals, optimal nutritional support 
in burn patients with acute kidney injury largely relies on the burn severity, individual presentation of 
malnourishment, and timely resuscitation. Although novel biomarkers such as plasma and urinary NGAL 
levels, KIM-1, and IL-18 are still being investigated as diagnostic tools for acute kidney injury in both 
the early and late burn periods, and artificial intelligence/machine learning may soon be incorporated as 
an efficacious assessment tool in the future. Renal replacement therapy is often indicated in the setting 
of acute kidney injury due to severe burns, especially if the metabolic and fluid disturbances due to acute 
kidney injury are not adequately managed with fluid resuscitation, diuretics, electrolyte repletion, and 
other supportive measures. However, with over a third of all burn-related acute kidney injury patients 
requiring some form of renal replacement therapy, elevated mortality rates remain a cause for concern.

Key words: acute kidney injury; burns; thermal injury; renal replacement therapy.

INTRODUCTION

Burn-related injuries can cause adverse complications such as 
acute kidney injury (AKI),1 where the dysregulation of kidney 
function presents a dangerous physiological problem.2 The 
kidneys, serving as primary regulators of fluid homeostasis,3 
metabolite equilibrium,4 and pH balance,5 become subject 
to a series of nephrotoxic attacks and cellular disruptions due 
to the immediate effects of a burn injury. Understanding the 
pathophysiology of AKI due to burns allows for prompt di-
agnosis with early and aggressive management, reducing 
the progression of kidney injury, in-patient mortality rates, 
and post-AKI-related consequences.6 Studies into AKI’s risk 
factors and clinical features suggest that even mild AKI due to 
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underlying critical illness can be associated with lasting renal 
damage and functional loss.7–9 In this article, we review cur-
rent classifications, epidemiology, pathophysiology, diagnostic 
criteria, and the efficacy of various supportive and dialytic 
interventions for ameliorating AKI in burn-related settings.

DATA SELECTION AND REVIEW

The literature search was conducted across PubMed/
MEDLINE and EMBASE databases to identify all studies rel-
evant to AKI in burn-related settings, published from 2000 
until October 2022. Medical subject headings (MeSH terms) 
utilized in the search included “acute kidney injury,” “burns,” 
“burn injuries,” “renal replacement therapy,” and “renal 
failure.” Our search strategy encompassed burn patients across 
all age groups, irrespective of burn severity or AKI classifica-
tion, and regardless of the need for renal replacement therapy 
(RRT). Only studies published in English were considered, 
including prospective, retrospective, case-controlled, and co-
hort studies. Two independent investigators reviewed the 
titles, abstracts, and full texts of the retrieved studies. Any 
disagreements concerning inclusion criteria or study selection 
were resolved via a consensus of the 2 authors or by a third 
independent reviewer.

A total of 2061 articles were retrieved, and after duplicate 
removal and screening, 29 articles were deemed eligible for 
data extraction (Figure 1). Studies assessing burn parameters 
reported the frequency and severity of burn injury via 

TBSA, the proportion of inhalational injuries, and mortality. 
Frequently reported adverse outcomes among burn patients 
with AKI-included sepsis, need for mechanical ventilation, 
and the duration of the hospital or intensive care unit (ICU) 
stay. The need for RRT was reported in 20 of the collected 
studies, including RRT incidence and modality. All relevant 
publications were considered for data extraction, and tables 
were created summarizing the results of the included studies.

CLINICAL STAGING

Classification and assessment of AKI vary broadly interna-
tionally, with one report suggesting over 200 definitions of 
AKI across Europe,10 emphasizing the need for consistent 
and widely accessible diagnostic criteria. Among the most 
used measures are the Acute Kidney Injury Network (AKIN) 
and Risk, Injury, Failure, Loss, End-Stage Renal Disease 
(RIFLE) classifications. Published in 2004, the RIFLE criteria 
stratify AKI into high-sensitivity groups: risk, injury, and 
failure, with progressive renal disease beyond this point clas-
sified into complete loss and ESRD.11,12 The RIFLE system 
identifies changes in serum creatinine, glomerular filtration 
rate (GFR), and urine output (UOP) to detect and stage AKI. 
Since these biomarkers are analyzed with relative ease and are 
known predictors of renal function, the following evaluations 
are simple and cost-effective. Despite this, the reliance of the 
RIFLE criteria on frequently unobtainable baseline levels 
and the time lag between kidney dysfunction and noticeable 

Figure 1. Presents a flow chart summarizing the literature search results
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fluctuations in serum creatinine underscored the imperative 
to improve AKI staging criteria.13,14 In 2007, the AKIN clas-
sification system modified the RIFLE criterion by using a 0.3 
mg/dL increase in serum creatinine within 48 hours as an 
additional indication of stage 1 disease. Furthermore, AKIN 
removed the complete loss of renal function and ESKD, 
adding RRT to the staging criteria.12

Released in 2012, The Kidney Disease: Improving 
Global Outcomes (KDIGO) clinical practice guidelines 
were designed to unify the AKIN and RIFLE scoring sys-
tems. KDIGO-defined AKI utilizes absolute and relative 
increases in serum creatinine, potential administration of 
RRT, or a decline in urinary output (UOP) to stage the se-
verity of AKI.15 The KDIGO diagnostic criteria have been 
widely used in critically ill patients revealing a greater sen-
sitivity for AKI than previous classifications.16,17 However, a 
single-center prospective observational study that used var-
ious approaches to implement the KDIGO criteria showed 
AKI incidence varying between 28% and 75% in the same 
critically ill cohort.18 Despite multiple iterations of clinically 
and temporally defined stages of AKI, recent studies have 
widely adopted KDIGO guidelines to assess the progres-
sion, morbidity, and mortality of kidney injury in the burn 
population.19–21

EPIDEMIOLOGY

The incidence of AKI in burn patients is nearly 30%–40%, 
increasing with burn severity.19,22,23 Mortality rates among 
these patients are frequently reported, ranging from nearly 
40%,24 to as high as 80%.25 A cohort analysis including 304 
patients over 5 years with severe burns (>10% TBSA) revealed 
that 26.6% (81 patients) developed AKI (diagnosed by RIFLE 

criteria). These patients were noted to be more likely to be 
female and have sepsis.15 In this study, 60% of patients had 
stage 1 AKI, and progression through AKI stages was associ-
ated with increases in mortality rates. In some instances, the 
incidence rate of AKI development can even be higher. A ret-
rospective cohort study by Clark et al. examined 1040 ICU 
patients suffering from thermal burns, with 58% developing 
AKI.22 In their study, patients were graded with the KDIGO 
SCr-based criteria, and nearly 10% of patients required RRT 
for AKI stage 3. Incidence for RRT increased to 20% when 
TBSA burn severity was greater than 40.22 The proportion of 
patients requiring RRT increased with severe burn injuries, 
reaching an incidence of 20% in patients with TBSA >40%.22 
Similarly, mortality rates are also understood to rise as the se-
verity of burn injuries and AKI increases.

Another study noted that AKI occurred in as many as 28% 
of patients with severe burns, with an associated mortality rate 
as high as 88.0% in patients with severe burn-related AKI.26 
As such, mortality rates are understood to rise as the severity 
of burn injuries and AKI increases. While individual figures of 
in-hospital mortality vary, a comprehensive view of AKI inci-
dence approaches 40%. The cumulative incidence rate of AKI 
is tabulated in Table 1. Despite study-specific fluctuations in 
mortality data, this literature review presents the detrimental 
outcomes due to burns and mortality rates in patients with 
AKI across various studies in Table 2.

In a 3-year retrospective study, AKI was noted to occur in 
only 5-20% of patients, a figure lower than that due to other 
critical illnesses (sepsis, post-surgery), with overall mortality 
disproportionately high at around 80%. These finding were 
consistent with a meta-analysis from 2010 determining the 
prevalence of RRT in all burn patients and in patients with 
AKI secondary to burn (3.2% and 27.1%, respectively), also 
identifying an 80% mortality of burn patients with RRT.11,51 

Table 1. AKI Incidence in the ICU.

Study by year Number of patients in ICU Incidence rate of AKI

Coca et al.27 304 0.27
Steinvall et al.28 127 0.24
Palmieri et al.24 123 0.46
Palmieri et al.29 60 0.53
Chung et al.30 1973 0.33
Hu et al.31 396 0.38
Hong et al.32 45 0.24
Yang et al.33 66 0.47
Yim et al.34 97 0.41
Kym et al.35 85 0.56
Queiroz et al.36 293 0.26
Rakkolainen et al.37 19 0.47
Kuo et al.38 145 0.36
Hundeshagen et al.39 718 0.12
Kimmel et al.40 267 0.22
Chun et al.41 76 0.42
Depret et al.42 87 0.63
Clark et al.22 1040 0.58
Total 5921 0.38

Data on incidence rates of patients with AKI due to burn injuries in the ICU setting, compiled from 5921 patients.
Abbreviation: AKI: acute kidney injury
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Improved mortality rates have been observed in trials where 
early RRT was initiated for burn patients.52 Additional data 
from the STARRT-AKI trial comparing early and standard 
timing of RRT initiation suggested that 8.2% of patients who 
survived for 90 days or more after hospitalization for AKI 
remained dependent on RRT.52 Here, no statistically signif-
icant difference in mortality was observed between early and 
regular initiation of RRT for AKI. Although not specific to 
AKI in burn-related setting, these conflicting findings further 
reiterate the need for additional research to optimize RRT 
timing and delivery to improve prognostic outcomes.

Long-term outcomes for burn patients with AKI receiving 
RRT during their initial treatment have been studied scarcely 
in the literature. An epidemiological study of Finnish registries 
by Helantera et al. investigated 41 179 adults treated for burns 
between 1998 and 2011.53 Of the 43 patients who developed 
ESRD following AKI-RRT, the authors considered burn in-
jury to accelerate kidney deterioration rather than directly 
cause ESRD. This indicates an unlikely association between 
burn-induced AKI and long-term renal failure. These findings 
were supported by another retrospective study evaluating the 
incidence of long-term RRT following burn injuries, where 
6.3% (2 out of 32 patients) of their surviving population devel-
oped ESRD requiring RRT greater than 3 months following 
burn injury.54 However, in a retrospective cohort examination 

of burn patients who developed AKI, Thalji et al. displayed 
an increased incidence of severe CKD, hospital readmission, 
and mortality 1 year following the burn injury compared to 
non-AKI burn patients.6 These conflicted findings suggest a 
need for further studies to include a longitudinal evaluation 
of adverse outcomes in burn-induced AKI patients and those 
requiring acute and chronic RRT.

PATHOPHYSIOLOGY

Burn injuries can be associated with numerous complications, 
such as hypermetabolic response, hypovolemia, hypotension, 
and sepsis.55 Early burn-related AKI (0–3 days after) may be 
prerenal (hypovolemia, poor renal perfusion) or intrinsic (pro-
longed and severe prerenal AKI resulting in acute tubular in-
jury or tubular obstruction) in nature. Early burn-related AKI 
can be related to the degree of shock and under-resuscitation 
of shock in the early stages of the disease.2 Previous studies 
have highlighted that the hypermetabolic response is 
preceded by a distinct initial hypometabolic phase in the first 
48 hours.56 Early burn-related AKI is also understood to be 
independently associated with rhabdomyolysis owing to direct 
tubular injury and oxidative stress.15 Past reviews have asso-
ciated hypovolemia, cardiac dysfunction, and ischemia with 

Table 2. Burn Characteristics and Adverse Outcomes.

Study by year
Patients with 

AKI (n) TBSA (%)
Inhalational 
injury (%) Sepsis (%)

Placed on mechanical 
ventilator (%) Length of stay (days)

Mortality 
(%)

Coca et al.27 81 34 ± 19 43 49 69 Hospital: 36.18 ± 29.2

ICU: 35.29 ± 25.52

28

Steinvall et al.28 31 47.2 ± 4.5 - 87 99 Hospital: 67.3 ± 10.87 36

Palmieri et al.24 56 41.7 ± 17 26 38 - Hospital: 51 ± 40

ICU: 36.7 ± 36

9

Palmieri et al.29 32 45.2 ± 19 - 76 - ICU: 42.9 ± 27 34

Chung et al.30 656 25 (13–42) 30 - - Hospital: 24 (11–58)

ICU: 9 (3–28)

21

Hong et al.32 11 69.6 ± 28.1 64 n/a 55 Hospital: 31.1 ± 40.2

ICU: 16.9 ± 11.3

73

Yang et al.33 55 66.7 ± 21.1 45 49 85 Hospital: 33.41 ± 40.55 51

Yim et al.34 40 54.2 ± 21.3 50 88 - - 10

Kym et al.35 48 63.1 ± 19.4 44 - - Hospital:37.9 ± 40.0 65

Ren et al.43 11 44.2 ± 22.4 64 - 46 - 36

Rakkolainen et al.37 9 45.6 ± 12.5 22 22 56 ICU: 34.9 ± 21 22

Kuo et al.38 52 60.5 ± 3.3 5 - 75 ICU: 43.6 ± 2.6 51

Kimmel et al.40 60 15 (12–20) 33 - - Hospital: 13.8 (8.9–19.8) 8

Chun et al.41 32 68.9 ± 14.9 19 69 - - 69

Tremblay et al.44 12 48 ± 16 - 100 100 - 50

Akers et al.45 17 - - 18 - - 35

Demsey et al.46 64 34 (18–50) - - 98 Hospital: 43 (22–63)

ICU: 15 (9–22)

22

Gille et al.47 18 42.5 (33.3–52.5) 33 94 94 Hospital: 72.5 (49.25–96.5) 11

Holm et al. 48 48 48* 79 75 100 - 85

Leblanc et al.9 16 58.0 ± 5.7 - - - Hospital: 24.2 ± 9.4 81

Mustonen et al.50 93 40.2 ± 17.7 23 - - Hospital: 37.1 ± 22.6 44

Twenty-one studies identifying 1442 patients with AKI due to burn-related trauma and their associated rates of injury, sepsis, and mortality. Data are provided as 
mean ± SD or median (IQR).
*SD not provided.
Abbreviation: AKI: acute kidney injury.
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early burn-related AKI, mediating biochemical and physiolog-
ical alterations by proteins and signaling factors released from 
tissues after damage incurred from burns and other related 
injuries.55

A reduction in the overall perfusion of the kidneys causes 
prerenal AKI. Kidneys receive nearly 25% of cardiac output, 
and reduced kidney perfusion can be associated with vessel 
damage.57 Here, “prerenal” restrictions in blood flow to the 
kidney are reflected in a decreased GFR, resulting in down-
stream physiological complications.58 The characteristic 
decrease in GFR is due to renal hypoperfusion caused by hy-
povolemia and hypotension immediately after burn-related 
injuries.59 Approaching the kidney on a functional level, in-
trinsic renal AKI is caused by damage to renal tubules, the 
interstitium, or the glomerulus. Damage to renal machinery 
may be associated with intrinsic renal pathology (glomerulo-
nephritis, tubular obstruction) or prolonged prerenal injury.60 
In burn-related settings, this damage can be chemically in-
duced by nephrotoxic drugs administered in the ICU or by 
an inability to perform timely, adequate fluid resuscitation.61

Burn-induced hypovolemia is characterized by reductions 
in intravascular fluid volume and damaging the proximal tu-
bule and loop of Henle.62,63 Hypovolemia is associated with 
the third-spacing of fluid due to widespread vasodilation 
and systemic inflammation, causing increased fluid in in-
terstitial spaces and subsequently decreased renal perfusion 
pressures.64 Ischemic injury induces the release of oxygen-
free radicals and denatured cellular proteins and metabolites 
that exacerbate renal injury.23 In the early stages, visceral vas-
oconstriction and low renal perfusion can also cause acute tu-
bular necrosis (ATN) and oxidative damage.2 Oxidative stress 
induced by reactive oxygen species (ROS) from burns elicits 
numerous biochemical pathways leading to inflammation and 
apoptosis, triggering renal tissue damage. Proinflammatory 
cytokines, such as IL-1β, IL-6, and TNF-α, are known for 
their immunosuppressive function and are associated with 
early burn-related AKI.65 In addition, the oxidative stress 
response involves cytochrome-c release and caspase-3 activa-
tion mediating prolonged apoptosis.66 A visual biochemical 
pathway of early AKI from burns due to oxidative stress is 
displayed in Figure 2.

Late burn-related AKI (4–14 days after) can result from 
sepsis, nephrotoxic drugs, multiorgan dysfunction, or pro-
longed shock.11 This is often characterized by disseminated 
intravascular coagulation and ATN due to direct toxic damage 
from denatured tissue proteins. As such, progressive direct 
and indirect biological changes, along with interventions due 
to burn-related injuries, can induce highly toxic renal dysfunc-
tion. A visual schematic of the early and late causes of burn-
related AKI is shown in Figure 3.

RISK FACTORS AND CLASSIFICATION 
SCORES FOR AKI IN BURNS

Early detection of AKI in burn patients requires a high de-
gree of clinical suspicion allowing for biomarker assessment, 
renal function tests, and UOP measures for early and ac-
curate diagnosis.67 A systematic review and meta-analysis 
of AKI in burns reveal multiple risk factors associated with 
worsened prognosis, including older age, greater burned 

TBSA, pronounced full-thickness TBSA, exposure to direct 
flames, and inhalational injuries.2 Older age, diabetes mel-
litus, and chronic hypertension are understood to be associ-
ated with higher rates of AKI in the general population and 
burn populations.55 The presence of sepsis,68 blunt abdominal 
trauma,69 rhabdomyolysis,9 and the need for mechanical ven-
tilation70 have all been proven to be independently associated 
with an increased rate of developing AKI. Overall, examina-
tion of demographic and physiological data suggest that the 
severity of burn-related injuries, the extent of immediate and 
progressive renal damage, and variations in individual presen-
tation of complications must be understood together to en-
sure efficient diagnosis and intervention.55

Predictive parameters, including scoring indices and 
standardized diagnostic criteria, can further aid in stratifying 
cases based on their risk profile, helping prevent the rapid 
illness progression often observed in the ICU.71 Validated 
metrics for classifying the extent of burn injuries, such as 
the Abbreviated Burn Severity Index (ABSI) on admission, 
Sequential Organ Failure Assessment Score (SOFA score) 
on admission, Modified Marshall Score, baseline blood urea 
nitrogen (BUN), and serum creatinine all serve to discrimi-
nate the risk of AKI.2 ABSI, SOFA, and Acute Physiology and 
Chronic Health Evaluation (APACHE II) mean scores at ad-
mission were found to be significantly greater in burn patients 
with AKI than those without AKI, indicating their use for 
early diagnosis.72 These indices can be used for developing 
predictive models for adverse outcomes, as demonstrated by 
Moore et al., where APACHE III scores and full-thickness 
surface area (FTSA) were shown to predict mortality with 
better discrimination than either variable independently.73 
SOFA scores have also been considered a strong prognostic 
tool for patients with AKI undergoing continuous RRT. A 
study by Wang et al. displayed SOFA scores as better predictive 
models for 90-day mortality than APACHE II in univariate 
analysis.74 These findings highlight the utility of comprehen-
sive diagnostic criteria, encouraging further optimization of 
these criteria for baseline variations in burn-related hospital 
admissions. The extensive factors to consider when instituting 
a risk profile for AKI patients prompted by severe burns are 
provided in Figure 4. The heterogeneity and complexity of 
AKI-associated risk factors reiterate the need for further re-
search into the physiological mechanisms that drive AKI path-
ogenesis and progression.

DIAGNOSIS OF AKI IN BURNS

To optimize its diagnosis and treatment, AKI is primarily de-
fined as the rapid and often abrupt decline in renal function 
reflected by the GFR, serum creatinine, and blood urea ni-
trogen (BUN).75 A decline in the GFR, a measure of plasma 
filtration in the glomeruli, has been considered a standard and 
direct measure of renal function decline in AKI.76 Practical 
difficulties in measuring GFR77 have led to an emphasis on 
using downstream increases in serum creatinine and BUN as 
more accessible indicators of AKI.78–80 Despite recent advances 
in diagnostic definitions of AKI using serum creatinine and 
BUN, these renal markers may remain normal in the early 
stages of injury, proving diminished clinical utility. The earliest 
symptom of AKI can be an abrupt decline in the volume of 
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urine produced, thereby causing electrolyte imbalances, re-
tention of water, and accumulation of metabolic byproducts 
and toxins.60 Identification of these predictive biomarkers and 
their use throughout disease progression holds the potential 
to improve management and reduce adverse outcomes in af-
fected patients.

Serum creatinine (1.5× or greater from baseline) and ele-
vated levels of BUN are used to classify AKI, and Emami et 
al. displayed an AUC of 0.73 and 0.71 for serum creatinine 
and BUN, respectively, in predicting early and late AKI from 
burns using RIFLE criteria.35 However, both BUN and serum 
creatinine have several notable limitations in their evaluation 

Figure 2. Provides a flow diagram for the damaging of renal tissue in burn-induced AKI following inflammation and apoptosis under oxidative 
stress. NF-kB and p38 are activated by reactive oxygen species (ROS), releasing cytochrome c, and activating the caspase-3 apoptotic pathway
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of renal function in the setting of burns. Hypercatabolic-
induced urea overproduction and states of rhabdomyolysis 
can independently elevate BUN and serum creatinine levels, 
respectively. Second, the GFR can be preserved to an ex-
tent (and thus serum creatinine levels) during kidney injury 
due to the renal reserve. Moreover, fixed rates of creatinine 
and BUN production influence their levels in AKI.35 In fact, 
serum creatinine remains unaffected until the GFR decreases 
by 30%–40%.81 Factors such as sepsis, catabolic state, dehy-
dration, and hypovolemic shock can further complicate serum 
creatinine levels and, thus, its reliability as a biomarker in AKI 
due to burns. BUN has shown mixed results in its strength as 
a predictive biomarker, likely due to its modification by factors 
such as burn size, sex, and age.82

Recent studies have attempted to identify neutrophil 
gelatinase-association lipocalin (NGAL) as an early onset 
biomarker for AKI in burn patients that can be elevated as 

early as 4 hours after renal injury and remains elevated till 
48 hours after injury.83 NGAL is released by epithelial cells 
and neutrophils in areas such as the lungs, renal tissue, tra-
cheal tissue, and the intestine, where plasma NGAL levels are 
understood to correspond to levels of distal tubular injury.84 
Elevated plasma and urine NGAL levels were also noted to 
be associated with higher 48-hour mortality rates in patients 
with severe burns.33 A correlation between serum NGAL 
levels and TBSA (r = .572, P = .001) by Lee et al. deter-
mined its prospective use as a severity marker in burn patients. 
Kim et al. found that urinary NGAL was a higher predictor 
as a biomarker of AKI in burn patients compared to serum 
NGAL.81 They attributed these differences to factors such as 
acute respiratory distress syndrome (ARDS), sepsis, and sys-
temic inflammatory response system (SIRS) which impact 
plasma NGAL more than urinary NGAL. Notably, the study 
also found serum creatinine to be superior to urinary NGAL 

Figure 3. Depicts the early (0–3 days) and late (4–14) stages of burn injuries with pre-, intrinsic-, and postrenal complications correlated to direct 
reductions in renal functions to prompt AKI diagnosis
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in the first week of AKI. This may be explained by differences 
in the staging of AKI. Early AKI involves volume alterations 
and potential fluid resuscitations, whereas late AKI is associ-
ated with multiorgan failure, nephrotoxic agents, and sepsis. 
Thus, different biomarkers may need to be considered for dif-
ferent stages of AKI.

On the other hand, Yim et al. have noted that in patients 
admitted to the ICU with burns and AKI, serum cystatin-C 
levels have been useful in detecting late-onset AKI.34 This 
was confirmed in their study with an AUC of ROC curve 
for predicting AKI with serum cystatin-C of 0.908 (0.843–
0.973) on day 14 postburn, which was greater than that of 
serum creatinine at 0.790 (0.692–0.888).34 These patients 
have significantly elevated cystatin-C at a mean of postburn 
day 14 and developed AKI at a mean of postburn day 17.34 
Cystatin C is notably not influenced by protein intake, 
gender, age, or muscle composition unlike serum creatinine 
levels. Studies have typically considered cystatin C a stronger 
indicator of burn-induced AKI than creatinine due to var-
ious factors, such as its shorter half-life. However, Kim et 
al. found serum creatinine to be a superior predictor and 
attributed this difference to factors such as systemic inflam-
mation, which is associated with burn patients who have a 
higher risk of infection and can alter the levels of certain 
biomarker.81

A prospective cohort study investigated serum creati-
nine, serum cystatin C, and plasma and urinary NGAL levels 
as diagnostic tools for AKI in both the early and late burn 
periods.33 They found that all 4 of these biomarkers were 
reliable predictors of early AKI and death. Notably, urinary 

and serum NGAL levels increased at the time of admission, 
whereas cystatin C and creatinine did not increase until 12 
hours after admission. More specifically, urine NGAL was 
the first biomarker to increase, followed by serum NGAL, 
cystatin C, and serum creatinine levels. However, both uri-
nary and serum NGAL levels were increased in patients with 
greater surface area burns. Thus, the percent TBSA (% TBSA) 
may help determine which biomarkers are most influential in 
early AKI burn patients. They also found that only urine and 
plasma NGAL levels were statistically significant in predicting 
late AKI and deaths within 6 hours of admission, although 
they were unable to distinguish this from patients who would 
not develop AKI and thus survive. NGAL was a poor pre-
dictor in instances of high % TBSA.33

Other biomarkers, such as urinary kidney injury molecule-1 
(KIM-1) and interleukin-18 (IL-18), have also been noted to 
be elevated among patients developing AKI following burn 
injuries. Ren et al. found that combined KIM-1 and IL-18 
levels might be superior biomarkers to serum creatinine and 
BUN in early-stage AKI due to burns.43 In fact, their values 
increase within 2 hours of renal injury allowing for rapid de-
tection of AKI. Their study determined urinary KIM-1 levels 
had a positive correlation with increasing severity of burn 
injury, determined by factors such as % TBSA and the pres-
ence of rhabdomyolysis. They found that both urinary KIM-1 
and IL-18 levels were strongly correlated with serum creati-
nine and BUN levels and detected earlier than serum creati-
nine elevations. Combining both urinary KIM-1 and IL-18 
levels for evaluation, rather than looking at one or the other, 
improved the ability to predict AKI.43

Figure 4. Outlines varying clinical measures available, to be used alongside the individual patient presentation, when establishing a risk profile for 
moderate to severe burn-related AKI patients. Abbreviations: ABSI: A Body Shape Index; SOFA: Sequential Organ Failure Assessment; APACHE: 
Acute Physiology and Chronic Health Evaluation

D
ow

nloaded from
 https://academ

ic.oup.com
/jbcr/article/45/2/323/7241145 by O

hio State U
niversity Law

 user on 16 June 2025



Journal of Burn Care & Research	
Volume 45, Number 2	 Khandelwal et al    331

While more analysis is warranted to understand the prog-
nostic efficacy of these novel biomarkers in the setting of 
burns, it is possible to develop a model to predict AKI in these 
settings. Artificial intelligence/machine learning (AI/ML) 
algorithms have recently been developed and tested for their 
efficacy in diagnosing AKI in burn patients, where Tran et al. 
developed a k-nearest neighbor ML model to identify AKI 
risk in burn patients with 90%–100% accuracy.85 A pilot com-
parison by Rashidi et al. utilized NGAL, creatinine, UOP, and 
N-terminal pro B-type natriuretic peptide (NT-proBNP) to 
successfully predict AKI following severe burns 61.8 ± 32.5 
hours in patients faster than KDIGO criteria.86 The potential 
for AI/ML to be used in diagnostic capabilities compared to 
the current workflow is shown in Figure 5.

NUTRITION IN BURN PATIENTS WITH AKI

Malnutrition is seen in 24%–60% of hospitalized AKI patients, 
demonstrating significant protein-energy wasting and nega-
tive nitrogen balance.87 Severe burn-related trauma is likewise 
associated with metabolic derangements in the ICU setting, 

exacerbated by AKI. Directly following severe burn injury, 
patients observe an “ebb” phase characterized by a decrease in 
tissue perfusion and metabolic rate lasting 2 to 3 days. In the 
subsequent persistent hypermetabolic response, inflammatory 
mediators and catecholamines effectuate severe catabolism 
for a prolonged period.88 A clinical trial encompassing 668 
children with burns revealed a significant difference in mor-
tality associated with those receiving early versus late enteral 
nutrition (8.5% vs. 12%, P < .05).89 This poses an adverse out-
come as protein breakdown is not limited to just muscle tissue 
but affects all organs in burn patients, where large protein and 
energy debts become a predictor for multiple organ dysfunc-
tion (MODS) and mortality. The catabolic persistence in burn 
victims aggravated by AKI involves the wasting of lean body 
mass, and dietary recommendations suggest enteral nutrient 
supplementation with high protein diets for adults (1.5 to 2 
g/kg/day) and children (2.5–4.0 g/kg/day).90 A prospective 
crossover trial by Hart et al. determined that carbohydrate-
rich diets (82% carbohydrates, 15% protein, and 3% fat) given 
during the hypermetabolic phase decreased protein break-
down (P < .01) and increased endogenous insulin levels in 
pediatric burn patients compared to high-fat diets (P = .01).91

Figure 5. Outlines a conceptual model for the use of AI/ML-enhanced workflow toward diagnosing acute kidney injury (AKI) in burn patients. 
Integrated datasets, using patient electronic medical records, laboratory values, physiological parameters, and medications, are used to develop an 
ML model to diagnose AKI in burn patients. Data are received from the time of admission (t0), and AI/ML algorithms can predict AKI (t1) earlier 
than traditional methods (t2)
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Accurate assessments of the diminished nutritional status 
in burn-induced AKI patients are further complicated by 
nutrient clearance during RRT. A prospective study by Oh 
et al. identified significant reductions in amino acids and 
micronutrients following various modalities of acute RRT 
such as intermittent hemodialysis (IHD), sustained low-
efficiency diafiltration (SLEDf), and continuous veno-venous 
hemofiltration (CVVH).92 Their results displayed the most 
significant loss in plasma amino acids due to CVVH, followed 
by SLEDf and IHD (P < .001). In addition, patients with 
severe burns display exudative losses of trace elements, also 
found depleted in the effluent following RRT.92 This is a se-
vere concern in burn-induced AKI patients requiring RRT, 
as these trace elements are also cofactors in critical enzymes 
involved with antioxidant defense, immune response, and 
wound healing.93 With no current consensus on predictive 
energy equations or ideal nutritional goals, optimal nutri-
tional support in burn patients with AKI largely relies on the 
burn severity, individual presentation of malnourishment, and 
timely resuscitation. However, these findings may also provide 
a basis for considering a patient’s nutritional status and neces-
sary dietary supplementation toward RRT initiation.

MANAGEMENT OF BURN INJURIES AND 
ACUTE KIDNEY INJURY

Hypovolemia and hypotension complicate burn injuries, 
resulting in poor perfusion and fluid volume instability within 
internal organs. Burn patients with reduced perfusion are 
prone to develop AKI and subsequent complications. Since 
the underlying pathology of AKI is reduced renal perfusion, 
management should involve aggressive and early crystalloid 
resuscitation, utilizing Lactated Ringers (LR). Although 
the “gold-standard” was the Parkland Formula, it has been 
recognized that patients may have been over-resuscitated, 
leading to the more recent adoption of the American Burn 
Association Consensus Formula.

Parkland’s formula for resuscitation is as follows:
Fluid requirement (in mL) = 4 mL × Body weight (kg) × 

TBSA Burn (%)
(First half given over 8 hours and next half given over 16 

hours)
American Burn Association Consensus Formula:
Fluid requirement for adults (in mL) = 2 mL × Body weight 

(kg) × TBSA Burn (%)
Fluid requirement for pediatrics (in mL) = 3 mL × Body 

weight (kg) × TBSA Burn (%)
Excessive fluid resuscitation with volumes exceeding 250 

mL/kg in 24 hours—known as the “Ivy Index” is associated 
with increased mortality.94 Newer studies have aimed at using 
colloids such as Fresh Frozen Plasma or Albumin, as these 
allow for resuscitation of intravascular volumes alone, sparing 
the interstitial/extravascular compartments and thereby 
preventing iatrogenic edema.95

Negative consequences that consist due to the management 
of burns and AKI early in the treatment course substantially im-
pact hospital expenditures and patient outcomes. Non-dialytic 
treatment of AKI in burn patients involves close monitoring 
of antimicrobial medications such as aminoglycosides, van-
comycin, some cephalosporins, and many other known 

nephrotoxic drug agents.96 Palmieri et al. identified the use 
of nephrotoxic drugs to the progression of the highest RIFLE 
class, increasing their rate of sepsis and mortality.29 Another 
retrospective review by Hundeshagen et al. associated the 
coadministration of vancomycin and piperacillin-tazobactam 
(PT) with increased renal dysfunction in pediatric and adult 
burn patients.39 In their study, vancomycin and PT treatment 
relative to vancomycin treatment alone led to higher serum 
creatinine levels (0.26 ± 0.62 mg/dl vs. 0.05 ± 0.10 mg/dl, P 
< .01), lower creatinine clearance (−26 ± 39 mL/min vs. −10 
± 28 mL/min, P < .001), and a greater need for RRT (3% vs. 
0%, P = .03). Drug-induced tubular injury can be worsened 
with exposure to multiple nephrotoxins and underlying 
comorbidities, suggesting use only when pharmacokinetically 
monitored and administrated in appropriate intervals.

Later complications of burns include sepsis and MODS. 
Management of these complications involves both fluid man-
agement and appropriate antimicrobial therapy. This goal-
directed management of sepsis, often referred to as Early Goal 
Directed therapy (EGDT), has decreased morbidity associated 
with critical illnesses, including burns.97 EGDT involves fluid 
resuscitation with crystalloids as the first step and subsequent 
use of vasoactive agents or blood transfusions if necessary. The 
principal purpose behind EGDT is to ensure an early approach 
with infectious foci control before they disseminate pathogens 
that may complicate AKI.

Some studies have suggested that the use of Dopamine-1 
receptor agonist medications such as Fenoldopam has a role 
in managing AKI. A retrospective review of 16 studies span-
ning 1290 patients who received Fenoldopam for preventing 
or managing AKI caused by critical illnesses suggests that 
Fenoldopam use can reduce the need for RRT in patients 
with AKI.98 Another retrospective analysis of 758 severely 
burned patients admitted to a Burns Intensive Care Unit 
(BICU) showed an improvement in UOP, serum creatinine, 
and systolic blood pressure in patients treated with low-dose 
Fenoldopam, and this effect was sustained for over 48 hours 
among most of the 77 patients who received the drug.99 While 
Fenoldopam has shown promise in treating AKI, randomized 
controlled trials are warranted to better understand the true 
applicability of such medications. If renal function continues 
to decline despite resuscitative efforts, introducing RRT may 
be the next best step.

ROLE OF RRT IN THE MANAGEMENT OF 
AKI IN BURNS

Over the last 2 decades, burn treatment centers have em-
ployed a range of RRT modalities to address significant met-
abolic and fluid balance derangements. Continuous RRT 
(CRRT) has become standard practice for patients with se-
vere burns, particularly when initial management such as fluid 
resuscitation, diuretics, electrolyte replenishment, and other 
supportive measures are insufficient. Despite advancements 
in RRT techniques and burn care, AKI secondary to burn 
injuries is associated with increased mortality remaining near 
50%–60%.100,101 Duan et al. found an increased risk of RRT 
and AKI with an increased TBSA, with the highest rates of 
RRT in the TBSA ≥40% group.102 A cohort study noted that 
prompt initiation of Continuous Venovenous Hemofiltration 
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(CVVH) in severely burned patients yielded better outcomes 
in the form of reduced 28-day mortality rate, overall in-hospital 
mortality rates, decreased dependence for vasopressors, and 
better recovery in cases with shock.25 This retrospective anal-
ysis of early RRT compared to standard treatment in histor-
ical controls suggested the potential for improved outcomes, 
raising questions about the appropriate timing and thresholds 
for initiating RRT in AKI. RRT modalities and associated 
adverse healthcare outcomes from identified studies are 
presented in Table 3.

Hill et al. also observed CVVH as an effective means for 
improving survival in burn patients requiring vasoactive 
medications.33 In their study, CVVH alone did not signifi-
cantly improve mortality, but a difference was noted in the 
subset of their population receiving vasopressors with CVVH 
(54% vs. 37%, P = .032).33 Timely initiation of RRT in criti-
cally ill, burn patients with AKI, along with aggressive treat-
ment options, advocates as the best course for intervention. 
Published studies showed that burned patients’ average time 
from injury to dialysis was approximately 15 days.44 Analysis 
of a multinational, controlled trial (STARRT-AKI trial) 
identified the results of early vs. standard initiation of RRt. 
Composite events such as mortality rate at 90 days were com-
parable at 43.9% in the early treatment group and 43.7% in 
the standard treatment group. Among patients who survived, 
continued reliance on RRT was seen in 10.4% of patients in 
the accelerated therapy group, and 6% in the standard treat-
ment group (Relative risk of 1.74, 95% CI, 1.24 to 1.43).52 
While analysis of RRT modalities and outcomes in burns is 
still underway (ClinicalTrials.gov Identifier: NCT01213914), 
at present, CRRT seems to be preferred as the first-line RRT 

from this trial. A clear-cut timeline for the administration of 
CRRT in the setting of burn-associated AKI has yet to be es-
tablished; however, some data suggest that serum creatinine 
levels may be used to help in the decision-making process.106 
The pathophysiology of the disease may also be a more robust 
indicator for initiating RRT rather than renal function, while 
discontinuation of RRT is generally associated with the re-
turn of serum creatinine and UOP to normal levels.106 More 
recently, Zhang et al. looked into using furosemide stress 
testing (FST) to help predict the timing of CRRT initiation in 
AKI patients.107 UOP 2 hours after receiving furosemide was 
analyzed and found to be superior to NGAL in determining 
progression from stages 1 and 2 to stage 3 AKI.

Recent interest in blood endotoxin and inflammatory cyto-
kine removal via extracorporeal methods has shown to be ef-
fective through various pathways after a long period of CRRT. 
High levels of pro- and anti-inflammatory mediators are 
released into the bloodstream during the early stages of burns, 
indicating a need for nonconventional prompt treatments in 
AKI to control early-onset sepsis and septic shock.108 CRRT 
utilized in these patients suffering from severe burns with con-
current sepsis effectively mitigates the build-up of urea and 
various organic acids. These nephrotoxic compounds have 
the potential to impede the wound-healing process and de-
stabilize hemodynamics.109 A meta-analysis of 538 deep burn 
patients with 274 receiving CVVH/continuous venovenous 
hemodiafiltration (CVVHDF) blood purification presented a 
significant reduction in 28-day mortality and sepsis (P < .05); 
however, their results were inconclusive of other vital signs and 
the use of CVVH/CVVHDF in more severe complications.110 
A study on administering CVVH rather than dialysis found 

Table 3. RRT Modalities and Outcomes Following Burn-Induced AKI.

Study by year
Patients with 

AKI (n)
RRT 

initiated (%)
Length on 
RRT (days) Mode of RRT

Mortality of 
patients on RRT (%)

Coca et al.27 81 37 20 ± 24 RRT 73
Steinvall et al.28 31 13 - Dialysis 75
Hong et al.32 11 45 - Intermittent and continuous HD 80
Yang et al.33 55 40 5.82 ± 4.89 CRRT 77
Yim et al.34 40 58 - CRRT -
Kym et al.35 48 46 - CRRT -
Ren et al.43 11 45 - CRRT 80
Rakkolainen et al.37 9 22 - RRT 0
Kuo et al.38 52 17 - RRT -
Chun et al.41 32 63 - CRRT 95
Tremblay et al.44 12 100 14 ± 13 CVVHDF/CVVH/CVVHD 50
Akers et al.45 38 87 - CVVH 58
Damkat-Thomas et al.103 17 29 - RRT 40
Demsey et al.46 64 28 - CVVHDF/IHD 39
Soltani et al.104 38 87 10.3 (1–44) HD 70
Gille et al.47 18 100 - CVVHDF 11
Haberal et al.105 19 100 - PD/HD 79
Holm et al.48 48 100 10.5* CAVH 85
Leblanc et al. 49 16 10 12.5 ± 1.7 CAVH/CAVHDF/CVVHDF 50
Mustonen et al.50 93 34 20.9 ± 60.3 CRRT/HD/PD 63

Baseline data on RRT treatment modality, prevalence, and mortality due to AKI in burn patients. Data are presented as mean ± SD or median (IQR).
*No SD.
Abbreviations: CVVH: continuous venovenous hemofiltration; CVVHDF: continuous venovenous hemodiafiltration; CAVH: continuous arteriovenous 
hemofiltration; IHD: intermittent hemodialysis; AKI: acute kidney injury; RRT: renal replacement therapy.
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decreased vasopressor requirements in AKI related to burn 
injury. They postulated that cytokine removal was associated 
with improved hemodynamic homeostasis. You et al. recently 
discovered that the early utility of high-volume hemofiltration 
(HVHF), resulted in the substantial elimination of cytokines 
in patients with sepsis and concurrent burn injuries.102,111 
Furthermore, an increased survival rate, diminished sepsis 
rate, improved immunologic response, and improved ar-
terial oxygen partial pressure ratios to a fraction of inspired 
oxygen were found. However, the RESCUE study, which 
looked at shock resolution through HVHF, found no changes 
in cytokines such as interferon-γ, IL6, IL8, IL10, and IL12, 
or tumor necrosis factor-α over 48 hours in this instance. 
Thus, other metabolic mechanisms should also be considered 
to explain the improvement of symptoms. The studies sug-
gest future research and therapy may be directed at removing 
damage-associated molecular patterns (DAMPs), as they are 
increased in burn injury and associated with monocyte activa-
tion and inflammation.102

Interestingly, Bellomo et al. looked at the differences in the 
delivery of caloric intake (DCI) in patients with AKI receiving 
RRT.112 Using data from patients receiving CRRT, they found 
the mean caloric intake was 11 Kcal/Kg/day, and 90-day 
mortality was similar for patients with a DCI above or below 
the median. Thus, there was no independent association be-
tween 90-day mortality and DCI. However, the authors 
mention a DCI of 25–35 Kcal/Kg/day is recommended for 
patients with AKI, although more RCTs needs to be col-
lected to solidify these recommendations. Another study re-
cently looked at the effects of regional citrate anticoagulation 
(RCA) as a means to mitigate the inflammatory response in 
patients receiving CRRT.113 More specifically, it functions 
through lowering expression of CD11b, an integrin found on 
neutrophils, and plasminogen activator inhibitor-1 (PAI-1) 
levels, enhancing fibrinolysis activity. Although stables levels 
of complements c3b and c5a were found in patients receiving 
RCA, more data need to be acquired.

COMPREHENSIVE CARE OF BURN 
PATIENTS WITH AKI

The comprehensive management of burn-related injuries 
requires a team of integrated healthcare professionals 
collaborating across multiple specialties. The burn care team, 
often consisting of a burn surgeon/specialist, intensivist, an-
esthesiologist, respiratory therapy, occupational/physical 
therapy, nursing staff, dietician, pharmacy, psychology/psy-
chiatry social work/case management, and chaplain services, 
among others, must work together to address their patient’s 
physical and psychosocial needs.114 The size of the burn team, 
the composition of professionals, and the scope of their work 
rely on the extent of injuries in the burn patient.115 Burn-
related injuries requiring acute RRT must utilize precision 
medicine to guide resource-intensive intervention promptly, 
allowing for an individualized approach to monitoring clinical 
status. The American Society of Nephrology Acute Kidney 
Injury Advisory Group advocates for the need for a nephrolo-
gist in the ICU setting, using their expertise in AKI diagnosis 
and RRT modalities to facilitate the homeostasis of fluids and 
electrolytes in burn victims.116 A single-center retrospective 

study by Rhee et al. demonstrated that the use of a specialized 
CRRT intervention team in the ICU decreased CRRT initi-
ation time (P = .027) and the rate of in-hospital mortality (P 
= .007).117 These findings support using a multidisciplinary 
team to treat burns patients with AKI, ensuring high-quality 
care delivery in the ICU.

CONCLUSIONS

AKI is a common complication of burn injuries, with its in-
cidence rising as the severity of burns, presence of high-risk 
scores, and pre-existing comorbidities increase. Renal injuries 
can be caused by poor perfusion, nephrotoxic drug insults, 
rhabdomyolysis, tubular injury, and among others. There is a 
lack of one uniform classification system that can grade kidney 
injury. However, a consistent pattern of increasing mortality 
and morbidity is seen as the severity of AKI rises across all 
systems. We note that AKI diagnosis shows promise, with the 
emergence of novel biomarkers that appear to show encour-
aging results in both early diagnosis of AKI and providing an 
accurate functional analysis of renal reserve and function. The 
management of AKI in the setting of burn injuries remains 
similar to that of AKI alone due to other causes centered 
around fluid resuscitation to improve renal perfusion, antibi-
otic, supportive management to treat associated conditions, 
and resorting to RRT if inadequate renal function remains. 
While no one modality of RRT has been deemed universally 
superior to others, CRRT is the preferred modality among 
clinicians and is the current topic of multiple trials.
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