This Trauma Protocol section covers the following emergencies:

- Trauma Emergencies with management of specific injuries
- Tranexamic Acid
- Spinal Motion Restriction (SMR)
- Burns
- ENT Injury
- Adult crushing trauma
- Trauma arrest
- Trauma triage protocols

A. Perform scene size-up to establish scene safety, number of patients and mechanism of injury. Request additional resources as needed. Begin assessment of the patient(s), looking for immediate life-threats first. Stay systematic: “ABCDE, IV, O2, ECG” should be your mantra; avoid getting distracted by visually impressive injuries that are not as critical as other, more subtle ones.

B. Rapid Trauma Assessment and recognition of major/multiple system trauma is essential to the subsequent treatment. Identify life-threats; chief complaints; assess airway and initiate appropriate therapies; assess breathing and initiate appropriate therapies; assess circulation and control major bleeding; establish a general impression of patient condition and prioritize patient for transport.

C. Special attention must be paid to the State of Ohio field trauma triage criteria, listed at the end of this protocol, when determining whether or not patient should be made a trauma alert and get transported to a trauma center. The prehospital provider on scene must use the triage criteria to quickly determine the appropriate receiving facility and method of transport (ground vs. aeromedical transport – See Transport Policy)

D. Transport MUST NOT BE DELAYED! Every effort should be made to limit on-scene time to 10 minutes or less.

E. In the event of a Mass Casualty Incident (MCI), the SALT triage system (Sort, Assess, Life-saving interventions, Treatment/Transport) shall be used.

F. With pregnant trauma patients, the fetus may compress the iliac vessels, inferior vena cava and the abdominal aorta when the mother is supine. To minimize the effects of the fetus pressure on venous return place a wedge (pillow) under the right abdominal flank or hip, apply continuous manual displacement of the uterus to the left or tilt the backboard to the left.

G. If the patient is entrapped or inaccessible, contact Medical Control and advise of condition and circumstances. Document reason for prolonged on-scene time.
A. Urgent Patient
 1. Maintain spinal motion restriction (SMR) if mechanism suggests spinal injury.
 2. Control life-threatening hemorrhage by appropriate method.
 3. Assess and manage airway:
 a. Administer oxygen as needed to treat shock and/or respiratory distress.
 b. Apply pulse oximeter and treat per pulse oximeter procedure.
 4. Perform a Rapid Trauma Assessment – quick head-to-toe survey to find additional life and/or limb-threatening injuries.
 5. TRANSPORT IMMEDIATELY (ALS intercept when available). During transport:
 7. Evaluate patient’s pulses, skin color and temperature, and nerve function distal to fractures / injuries. Splint individual fractures if time permits.
 8. Obtain relevant history of condition and determine OPQRSTI and SAMPLE, especially the where, when, and how regarding mechanism of injury.
 9. Contact Medical Control and advise of patient condition.
 10. Perform Detailed Physical exam and Ongoing Assessment during transport – head-to-toe assessment to identify additional injuries and to assess the effectiveness of treatments to this point.
 11. Obtain vital signs every 5 minutes. Urgent trauma patients are inherently unstable and can change/decompensate without warning.
 12. Activate trauma team as early as possible prior to hospital arrival if patient meets trauma activation criteria.

B. Non-Urgent Patient
 1. Maintain spinal motion restriction (SMR) if mechanism suggests spinal injury.
 2. Assess and manage airway.
 3. Administer oxygen as needed to treat shock and/or respiratory distress.
 4. Apply pulse oximeter and treat per pulse oximeter procedure.
 5. Control hemorrhage by appropriate methods.
 6. Perform focused exam on injured area.
 7. Splint all fracture(s). (In Non-Life Threatening situations ONLY)
 8. Evaluate and document pulses, skin color and temperature, and nerve function distal to injury before and after splinting.
 9. Obtain relevant history of condition and determine OPQRSTI and SAMPLE, especially the where, when, and how regarding mechanism of injury.
 10. Perform Detailed Physical exam and Ongoing Assessment during transport – head-to-toe assessment to identify additional injuries and to assess the effectiveness of treatments to this point.
 11. Contact Medical Control and advise of patient condition and transport.
 12. Though the non-urgent trauma patient may initially seem to have only minor injuries that are not life-threatening, trauma patients can be deceptively subtle and decompensate without warning. Remain vigilant and watch for declining neurological status and/or developing hypovolemic shock.

C. Management of specific injuries – see Specific Injuries table below
A. Start IV NS to maintain perfusion. Do NOT delay transport to start IV. If patient is hypotensive and symptomatic administer normal saline IV bolus:
 1. 250 – 500 ml for adults
 2. Repeat boluses as needed to maintain blood pressure of 110 systolic in adult head injured patients and 90 systolic in adult patients without head injury (permissive hypotension to avoid clot disruption).
 3. 20 ml/kg for pediatric patient (to a maximum of 500 ml) to avoid hypotension for age
 Definition of Pediatric Hypotension:
 - Patient => 10 yo: BPsys < 90 mmHg
 - Children 1-9 yo: BPsys < 70 + (2 x yrs)
 - Infants (1mo-1yr): BPsys < 70
 - Neonates (< 1mo): BPsys < 60

B. Apply cardiac monitor and check rhythm

C. See Pain Management Protocol as needed.

Advanced EMT

A. Use Tranexamic Acid (TXA) Protocol as needed – see below

Paramedic

A. Use Tranexamic Acid (TXA) Protocol as needed – see below
<table>
<thead>
<tr>
<th>HEAD</th>
<th>NECK / SPINE</th>
<th>EARS</th>
<th>EYES</th>
<th>NOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
</tr>
<tr>
<td>Evaluate patient condition: level of consciousness, pupil size / reaction, GCS</td>
<td>A cervical collar should be used if one or more of the following are met: Patient complains of or is found upon physical exam: - Neck pain - Spinal Tenderness - Pain on palpation of neck - Neuro deficits (numbness, tingling, weakness, loss / diminished sensation or motor weakness) - Altered LOC, Impaired competence (from drugs, alcohol, head injury), unable to communicate (young child, dementia, language barrier, etc.) and a MOI suggestive for neck injury - MOI for neck injury and other distracting injuries</td>
<td>Don’t get “the big eye”. Evaluate for signs of skull fracture, or other injuries that are more severe than the ear trauma itself</td>
<td>Evaluate for signs of skull fracture, or other injuries that are more severe than the ocular trauma itself, use SMR if indicated</td>
<td>Evaluate for signs of skull fracture, or other injuries that are more severe than the nasal trauma itself, use SMR if indicated</td>
</tr>
<tr>
<td>Check blood sugar</td>
<td>Spinal Motion Restriction – see below</td>
<td>Utilize spinal motion restriction (SMR) as necessary depending on the mechanism of injury</td>
<td>Penetrating: Do NOT remove any foreign body in the eye or orbit. Stabilize with dressing and cover with Styrofoam cup to avoid glancing blows. If patient will tolerate it, cover the “good” eye as well to minimize eye motion/pain</td>
<td>Assess and manage airway, typically get compromised by bleeding or other trauma, not the nasal injury itself. Have suction turned on and ready. Support with 100% oxygen by NRB or BVM as necessary.</td>
</tr>
<tr>
<td>Transport with head elevated 30⁰ by lifting backboard and maintaining spinal motion restriction (SMR)</td>
<td>If patient is wearing a helmet – see Helmet Removal Procedure</td>
<td>Control bleeding with direct pressure or gauze. Wrap in bulky dressing</td>
<td>Blunt: Look for globe rupture or hemorrhage or laceration. Gently apply a sterile moist dressing. Apply no pressure to the eye at any time</td>
<td>Do not use NPA devices; there may be nasal, facial, or skull fractures present.</td>
</tr>
<tr>
<td>Assess and manage airway; support with 100% oxygen by NRB or BVM</td>
<td>Contact Medical Control and advise of patient condition. Spinal cord injuries may need to be transported to a trauma center. Refer to trauma alert criteria.</td>
<td>Assess and document hearing ability/auditory acuity in both ears before you cover the ears</td>
<td>Obtain visual acuity as early as possible. The eye may swell up and make this impossible later!</td>
<td>Position patient upright and tilted slightly forward, other injuries permitting</td>
</tr>
<tr>
<td>Hyperventilate (rate of 20/min for adult, 25/min for child, 30/min for infant) ONLY when there are signs of cerebral herniation! – blown pupil, bradycardia, posturing, HTN. (ETCO₂ target level is 30-35 mmHg)</td>
<td>Spinal Motion Restriction – see below</td>
<td>If there is a foreign body in the ear, document what it is, but do not attempt to remove it, especially if the ear has already sustained trauma</td>
<td>Burns: Irrigate with copious H₂O or NS x 15 mins ASAP. Obtain name of culprit chemical if possible</td>
<td>For nosebleeds, pinch nostrils with continuous pressure x 15 mins. Do not “cheat” and check for bleeding before 15 mins has passed</td>
</tr>
<tr>
<td>Do NOT use occlusive dressings in nose/ears. Allow fluid to drain freely if present.</td>
<td>If patient is wearing a helmet – see Helmet Removal Procedure</td>
<td>If there is a foreign body in the ear, document what it is, but do not attempt to remove it, especially if the ear has already sustained trauma</td>
<td>Transport patient at 45⁰ (semi-fowler’s/semi-upright) unless other injuries prevent this</td>
<td>Cold pack on bridge of nose for swelling</td>
</tr>
<tr>
<td>Monitor and be prepared for vomiting.</td>
<td>Contact Medical Control and advise of patient condition. Spinal cord injuries may need to be transported to a trauma center. Refer to trauma alert criteria.</td>
<td>If patient is wearing a helmet – see Helmet Removal Procedure</td>
<td>Contacts: Pt removes -> EMT removes -> If they’re stuck, then tell the ED on arrival. Bring the lenses</td>
<td>Helmet Removal Procedure</td>
</tr>
<tr>
<td>Advanced EMT</td>
<td>Advanced airway management should be accomplished gently with spinal motion restriction (SMR)</td>
<td>Contact Medical Control and advise of patient condition. Spinal cord injuries may need to be transported to a trauma center. Refer to trauma alert criteria.</td>
<td>EMT-P</td>
<td>EMT-P</td>
</tr>
<tr>
<td>Advanced airway management should be accomplished gently with spinal motion restriction (SMR)</td>
<td>Combat hypotension with NS IVFs; in TBI patients without other major trauma, goal is BPsys > 110 mmHg for adults and BPsys > age- appropriate hypotension level in kids</td>
<td></td>
<td>Burns: 2 drops tetracaine in affected eye prior to irrigation, provided no allergies. Use a Morgan lens for irrigation. DO NOT use tetracaine if there is a penetrating injury</td>
<td>Burns: 2 drops tetracaine in affected eye prior to irrigation, provided no allergies. Use a Morgan lens for irrigation. DO NOT use tetracaine if there is a penetrating injury</td>
</tr>
<tr>
<td></td>
<td>Monitor for seizure activity</td>
<td></td>
<td>CVA: Acute unilateral painless vision loss may be a CRAO and should be a stroke alert if within time limit</td>
<td>CVA: Acute unilateral painless vision loss may be a CRAO and should be a stroke alert if within time limit</td>
</tr>
<tr>
<td>EMT-P</td>
<td>Cricothyrotomy may be indicated for airway control. Contact Medical Control for pediatric cric.</td>
<td></td>
<td></td>
<td>CVA: Acute unilateral painless vision loss may be a CRAO and should be a stroke alert if within time limit</td>
</tr>
</tbody>
</table>
SPECIFIC INJURIES

<table>
<thead>
<tr>
<th>TEETH</th>
<th>TONGUE</th>
<th>CHEST</th>
<th>ABDOMEN / PELVIS</th>
<th>EXTREMITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
</tr>
<tr>
<td>Evaluate for signs of skull fracture, or other injuries that are more severe than the dental trauma itself, use SMR if indicated. If the tooth is (likely) already out, place it in a protective solution: Whole milk, Cell culture medium (Save a Tooth – rarely available) and bring it to the ED with the pt. Handle the tooth by the chewing/enamel side only. Do NOT touch, wash, or scrub the roots.</td>
<td>Evaluate for signs of skull fracture, or other injuries that are more severe than the tongue trauma itself, use SMR if indicated. Single biggest danger is airway compromise. Assess and manage airway, typically gets compromised by swelling, blood loss, aspiration. Have suction turned on and ready. Support with 100% oxygen by NRB or BVM as necessary. Position patient upright and tilted slightly forward, other injuries permitting. Control bleeding with direct pressure via gauze, so long as this will not obstruct airway and pt will tolerate it. EMT-P Be prepared to aggressively manage airway. If the airway is becoming compromised, intervene early before swelling makes controlling it more difficult later. Primary tool is endotracheal intubation, but if this is not possible, cricothyrotomy may be necessary. Contact Medical Control for pediatric cric.</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Open Wounds: Control bleeding by most appropriate method: • Direct pressure • iTClamp • CAT Tourniquet</td>
</tr>
<tr>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
<td>Basic EMT</td>
</tr>
<tr>
<td>Sucking chest wound: Cover with non-porous dressing and seal on 3 sides or use a commercial seal. Flail chest: Stabilize flail segment with trauma dressing. Provide supplemental O2 to maintain oxygen saturation. Advanced EMT / Paramedic</td>
<td>Pneumothorax / Hemothorax: Transport in position of comfort and monitor for tension pneumothorax development. Symptoms of tension pneumothorax: • Chest pain or evidence of trauma • Tachypnea • Tachycardia • JVD • Diminished / absent breath sounds on affected side • Resistance felt with BVM • May initially present with hypertension progressing to hypotension • Hyperresonance on affected side • Tracheal deviation from affected side (LATE sign) Perform needle / pleural decompression – 2nd intercostal space, mid-clavicular line, just over/superior to the rib IVFs if BP < 90 mmHg in adults* in case of hemothorax or cardiac tamponade.</td>
<td>Evisceration: Cover organs with sterile dressing moistened with saline. Do NOT place exposed bowel or organs back into abdominal cavity. Lay patient flat and elevate knees. Impaled Object: Secure penetrating object with bulky dressings. Do NOT remove it. Examine heart and lung sounds as well (Think “thorax trauma”, not just abdominal injury) Unstable Pelvic Fracture: An “open book” fracture is unstable/moves to palpation, exhibits hemodynamic instability, has a high-energy mechanism of injury. Apply circumferential stabilization with commercial pelvic binder. If commercial device unavailable, consider wide sling made from bedsheet. Advanced EMT/Paramedic For all of the above conditions: BLS interventions, plus supplemental O2 or advanced airway management, IV pain meds, IVFs for BPsys < 90 mmHg in adults* Blunt trauma: #1 injured organ is liver. Usually less visually impressive than penetrating injury. Give IVFs early for persistent tachycardia, even if pt is still normotensive. Monitor vitals q5 mins, watch for hypovolemic shock from internal hemorrhage.</td>
<td>Complete Amputations: • Complete gross decon if needed • Cover wound stump with sterile dressing and carefully bandage • Attempt to find avulsed part, but do NOT delay transport. • Transport avulsed part in cool, dry, sterile dressing. EMT-P</td>
<td>Complete Amputations: • Complete gross decon if needed • Cover wound stump with sterile dressing and carefully bandage • Attempt to find avulsed part, but do NOT delay transport. • Transport avulsed part in cool, dry, sterile dressing. EMT-P</td>
</tr>
</tbody>
</table>

*or BPsys < age-appropriate hypotension level in children
TRANEXAMIC ACID (TXA)

GENERAL CONSIDERATIONS

Tranexamic Acid (TXA) has existed for decades. Initially used to minimize bleeding during surgical cases, it is now used in the management of trauma patients with severe hemorrhage and hemorrhagic shock. It is a medication that inhibits the breakdown of fibrin, and thus helps prevent clots from dissolving. By stabilizing the clot it allows the body a chance to "plug the holes" and stop or slow the rate of bleeding. TXA is most helpful with internal bleeding that cannot be otherwise controlled with direct pressure or a tourniquet, and is most helpful when given shortly after injury (ideally <1hr).

Paramedic

Indications for TXA use in trauma patients:

- Adult patient => 16 years old
- Evidence of marked blood loss
- Persistent HR > 110 bpm despite 500 mL NS IVFs, OR…
- Persistent BPsys < 90 mmHg despite 500 mL NS IVFs
- Major trauma with clear abdominal/pelvic injury
- Arterial bleeding you cannot stop with direct pressure or a tourniquet

Contraindications:

- Pediatric patient < 16 years old. No TXA in kids.
- Non-hemorrhagic shock
- Non-traumatic shock (i.e. neurogenic or septic shock)
- Isolated head injury
- Allergy

Side Effects:

TXA has not been shown to cause significant increase in deep venous thrombosis (DVT), pulmonary embolus (PE), myocardial infarction (MI), or stroke in adult patients in published trials to date.

Dosage:

Administer 1 Gram/100ml IV piggyback over 10 minutes. Administration can be completed in the emergency department. NOTE – 250 ml NS may be used if 100 ml not available.
Indication: This Protocol addresses the assessment and treatment for trauma patients with potential cervical, thoracic, or lower spinal injuries. When indicated, Spinal Motion Restriction, (SMR), is performed by the application of a rigid cervical collar.

1) **SMR is to be applied to trauma patients meeting any of the following criteria:**
 - Patient complains of neck or upper back pain.
 - Patient has or had motor weakness, numbness / tingling, or loss of feeling to any extremity.
 - Patient has a MOI consistent with a possible spinal injury and:
 - Has an altered mental status, (i.e. is not A&O x4 or GCS is not 15).
 - Has a communications barrier preventing a complete and meaningful assessment, (e.g. Language barrier, young pediatric patients, patients with a CVA or dementia preventing or limiting assessment, patients with significant MR / developmental delay, etc.).
 - Exam suggests that the patient may be impaired based upon alcohol intoxication, drugs, or other medications.
 - Has a distracting injury, (i.e. other significantly painful injury which could mask symptoms from a spinal injury).
 - Has pain or tenderness on palpation of the neck or upper thoracic spine.
 - Has pain or tenderness on cervical range of motion assessment.

2) If the patient's MOI is such that a cervical spinal injury could exist, and they have not had SMR applied based upon the above criteria, then perform the **cervical range of motion (CRM) assessment.** Stop the assessment, have the patient return to the neutral position, and apply SMR if the patient experiences pain, discomfort, numbness or tingling to an extremity, or other such symptoms.

3) Otherwise, SMR is not indicated.

CERVICAL RANGE OF MOTION ASSESSMENT:

CRM assessment is **not** to be performed if the patient meets any of the SMR criteria above.

CRM testing is to be performed by the patient themselves, EMS personnel are not to move the patient's head.

Have the patient gently flex their cervical spine by bringing their chin down to their chest, and then extend their cervical spine by tilting backwards to look upwards. From the neutral position then have the patient rotate their head to the left and right, by bringing their chin over to towards their shoulders.

MECHANISM OF INJURY, (MOI): Trauma patients experiencing the following MOI's require a SMR assessment.

- Fall from standing position with the possibility of having hit their head
- Fall from any height
- Vehicle crash, (MVC, ATV, motorcycle, bicycle, snowmobile, skateboard, etc.)
- Pedestrian struck by a vehicle
- Swimming, diving, or near drowning incident
- High voltage or lightning injury
- Altercation with potential for spinal injury
- Other event consistent with a possible spinal injury
PATIENT'S MEDICAL RECORD: If a spinal care assessment was performed then clearly document on the patient's medical record why SMR was indicated or that it was not indicated.

BACKBOARD (LONG SPINE BOARD) UTILIZATION: The backboard is to be considered an extrication device, not a treatment modality or transportation device. Patients warranting SMR may be transported on the EMS cot with a rigid cervical collar in place and without a backboard, or CID, (head blocks, etc.).

If a backboard, KED, Reeve's stretcher, scoop stretcher, or similar device is utilized for extrication, most patients should be removed from them as soon as possible, i.e. prior to transport.

Backboards may be utilized for extrication and / or transport of major trauma patients, patients who are semiconscious / unconscious, for those who are otherwise difficult to move, or in whom possible pelvic or hip injuries preclude patient movement without the backboard. The backboard may be padded.

Application of the backboard to a standing patient (i.e. a “standing takedown”) is contraindicated.

Full body vacuum mattresses, (with or without a backboard for additional support), may be used for both extrication and transport as needed. Upon arrival to the ED, deflate the vacuum mattress, and staff will help you transfer the patient onto the ED stretcher using the hard slide board.

SELF-EXTRICATION/AMBULATION: Excluding major trauma/”load and go” patients, patients involved in a MVC should be assessed for SMR prior to their removal from the vehicle. If indicated, a rigid cervical collar should be applied while the patient is still within the vehicle. If the patient is able to do so, they may be assisted in exiting the vehicle with their c-collar in place without the use of either a short (KED) or long spine board (backboard). Manual stabilization of the patient's cervical spine by EMS personnel during extrication is an alternative to early cervical collar application.

The patient's motor and sensory exam of the extremities is to be assessed, (and subsequently documented), both prior to and following extrication.

A patient who is otherwise able to do so may walk several steps, with or without a rigid cervical collar in place, as indicated, to either a stair chair or cot. For example: A patient involved in an MVC who is experiencing neck pain could be placed in a rigid cervical collar while in the vehicle, and then be assisted in exiting the vehicle and walking several steps to a cot.

If spinal care assessment is deferred prior to extrication, the reason for doing so is to be documented in the patient's medical record, (e.g. patient in extremis, major trauma/”load and go” patient, vehicle was on fire, vehicle was under water, etc.).

LOW BACK PAIN: A patient with low back pain, without major trauma or pelvic injuries, and without indications as above for SMR, may be transported on the EMS cot without the use of a backboard. A full body vacuum mattress may be used if deemed appropriate to do so.

COT POSITIONING: A patient with or without a cervical collar in place may be transported in their position of comfort, (supine, partially reclined, or upright), barring other indications for specific positioning, (e.g. Supine for a patient in shock). Do not utilize Trendelenburg positioning, even for patients in shock; it is ineffective.

EXCLUSION CRITERIA: Penetrating injuries, (GSW, knife, etc.), to the head, neck, and torso do not require SMR unless the patient is awake and complaining of a new neurological, (motor or sensory), deficit, and immobilization can be performed without otherwise compromising the patient's airway management.
Patients experiencing an exacerbation of chronic back pain, without having experienced a new traumatic event, do not require SMR.

ALTERNATIVE IMMOBILIZATION OPTIONS: In patients for whom SMR is indicated, but from whom an appropriately fitting rigid cervical collar is not available, alternative methods of restricting the spinal motion may be employed. These include, but are not limited to, using a towel roll or a full body vacuum mattress.

HIGH RISK INDIVIDUALS: Keep in mind that geriatric patients, patients with prior spinal surgery, dialysis patients, and those with known metastatic cancer are at a higher risk of sustaining spinal injuries.
A. The first priority is to assure scene safety and then remove the patient from heat and flame, electrical and/or chemical exposure.

B. When dealing with contaminated environments, EMTs must have appropriate PPE. If not available, contact appropriate HazMat team for assistance.

C. Remember the “ABCDE, IV, O2, ECG” mantra first and foremost. Airway, Breathing, and Circulation MUST be stabilized before attending to the burn.

D. Patient with extensive burns must be monitored for hypothermia. Avoid use of ice and/or prolonged use of cold compresses. When in doubt, cover with a dry dressing.

E. In caring for the burn patient, the EMT should:
 1. Stop the burning
 2. Reduce the pain
 3. Prevent contamination

F. For patients with critical burns, EMTs should contact Medical Control to advise them of patient’s condition and request transport to the Burn Center. Squads should never pass the nearest acute care facility unless they are Advanced Life Support staffed (Paramedic) and are capable of providing total airway management as indicated (endotracheal intubation and/or surgical cricothyroidotomy). If the patient is BOTH a major trauma (“trauma alert”) patient and a burn patient, patients shall be transported to the trauma center FIRST and a trauma alert activated, where they will be stabilized and their injuries addressed. Thereafter, the trauma center will handle transfer to a burn unit.

G. Gross decontamination must be done at the scene. Advise receiving facility if complete decontamination was not done at the scene and be prepared to transport to decontamination area.

Basic EMT

A. Assess and manage airway. Apply pulse oximeter and treat per procedure.

B. Determine type of burn and treat as follows:

 1. Thermal burn (dry and moist):
 a. Stop the burning process, i.e., remove patient from heat source, cool skin, remove clothing.
 b. If patient starts to shiver or skin is cool, stop cooling process.
 c. Cover burn areas with dry bulky dressing.

 2. Radiation burns:
 a. Treat like thermal burns except if burn is contaminated with radioactive source, treat like a chemical burn.
 b. Wear appropriate PPE when dealing with contamination.
c. Contact HazMat Team for assistance.

3. Chemical burns:
 a. Wear appropriate PPE when dealing with contamination
 b. Remove patient from contaminated area to decontamination site (NOT in squad)
 c. Determine chemical involved; contact appropriate agency for chemical information
 d. Remove patient’s clothing and flush skin.
 e. Leave contaminated clothing / belongings at scene. Cover patient’s anterior and posterior sides before loading into squad
 f. Patient should be transported by personnel not involved in decontamination process.
 g. Relay type of substance involved to Medical Control. If available, bring MSDS with patient to the hospital.

4. Electrical burns:
 a. Shut down electrical source; do NOT attempt to remove the patient until electricity is CONFIRMED to be shut off.
 b. Assess for visible entrance and exit wounds and treat as thermal burns.
 c. Assess for internal injury, i.e., vascular / tissue damage, fractures, etc. and treat accordingly.

5. Inhalation burns:
 a. Always suspect inhalation burns when the patient is found in a closed, smoky environment and/or exhibits any of the following: burns to face/neck, singed nasal hairs, cough and/or stridor, soot in sputum.
 b. Provide 100% oxygen via NRB or BVM

 C. Estimate extent (percentage of body surface area involved) and depth of burn (superficial, partial thickness, full thickness). Determine seriousness of burn (see chart).

 D. Contact Medical Control and transport.

Advanced EMT / Paramedic

A. Refer to Advanced Airway Management Procedure as indicated. Intervene on any potentially compromised airway sooner rather than later; burned airways may swell and make later intubation exponentially more difficult

B. Apply cardiac monitor and identify dysrhythmias.

C. If signs and symptoms of hypovolemia are present, start IV per shock protocol. **Do NOT delay transport for IVs and AVOID multiple IV attempts.**

D. For pain relief, see Pain Management Protocol.
RULE of NINES

For irregular shaped burns - 1% BSA is equal to the surface of the palm of the patient’s hand.

BURN SEVERITY

<table>
<thead>
<tr>
<th>Minor burn</th>
<th>Moderate Burn</th>
<th>Critical Burn**</th>
</tr>
</thead>
<tbody>
<tr>
<td><70% superficial burn</td>
<td>>70% superficial burn</td>
<td>>30% partial thickness burn</td>
</tr>
<tr>
<td><10% partial thickness burn</td>
<td>10-30% partial thickness burn*</td>
<td>>2% full thickness burn</td>
</tr>
<tr>
<td>< 2% full thickness burn*</td>
<td></td>
<td>Any burns with trauma</td>
</tr>
</tbody>
</table>

*Only if hands, face, feet, or genitalia are NOT involved.

**Patients who have sustained critical burns should be transported directly to a burn center UNLESS they also meet criteria for major trauma/are a “trauma alert” patient, in which case they should be transported to the trauma center FIRST
A. Follow the Trauma Emergencies Protocol as indicated. Note that the doses of medications involved in this crushing protocol also apply to patients with hyperkalemia for other reasons (e.g. missed dialysis).

B. Institute this crush protocol if one extremity has been trapped for two or more hours or if two extremities are trapped for one or more hours. This protocol should not be used for simple crush injuries (e.g. hand stuck in car door), as it will potentially make subsequent resuscitation by trauma team more difficult. This protocol should be used on crush injuries involving complete amputation or those involving substantial soft tissue destruction/mangling/disintegration of the extremity.

C. Note that this protocol requires a considerable amount of Sodium Bicarbonate. Additional resources may be needed to achieve therapeutic effect. Smaller amounts of Calcium gluconate and Albuterol will also be required.

D. **Prior to extrication:**
 1. Coordinate time of release with rescue personnel
 2. Establish at least one large bore IV and administer a 1000 ml bolus of normal saline. Do not use lactated ringer’s (LR).
 3. Administer 1 mEq/kg Sodium Bicarbonate as a bolus (minimum dose is 50 mEq)
 4. Apply cardiac monitor. Obtain monitor tracing prior to and sequentially during further treatment.
 5. Contact Medical Control and advise of the patient’s crushing injury.
 6. Anticipate Crushing Syndrome and possible cardiac arrest upon extrication of the patient.

E. **After extrication:**
 7. Add 50 mEq Sodium Bicarbonate to a 1000 ml NS bag and infuse at a rate of 1000 ml/hr. Be sure to label every IV bag that has the sodium bicarbonate added to it.
 8. Monitor ECG closely. Watch for tall, peaked T waves or widened QRS complexes (> 0.12 seconds)

F. If this protocol is used, then Calcium gluconate and Albuterol nebulizer solution must also be used in addition to the Sodium Bicarbonate. Sodium Bicarbonate is ineffective on its own in the short term.
 9. Flush out the sodium bicarbonate in the IV line or use a separate line to administer 10% Calcium gluconate 15-30 ml IV/IO over 2-5 minutes

 10. Administer at least one Albuterol nebulizer treatment after the Calcium gluconate has been infused, even if the patient has no respiratory issues

G. Transport to an appropriate and certified trauma center.

H. For pain relief, see Pain Protocol.
A. Resuscitation should not be attempted in cardiac arrest patients with hemicorporectomy, decapitation, or total body burns, nor in patients with obvious, severe blunt trauma who are without vital signs, pupillary response and/or an organized or shockable cardiac rhythm at the scene.

B. Multiple blunt trauma victims who are initially found by EMS in cardiac arrest or found at the scene without vital signs may be considered dead and follow the DOA protocol.

C. Extensive, time-consuming care of the trauma victim in the field is usually not warranted. Unless the patient is trapped, they should be enroute to a medical facility within 10 minutes after arrival of the ambulance on the scene.

D. While CPR in the pulseless trauma patient has overall been considered futile, several reversible causes of cardiac arrest in the context of trauma are correctible and their prompt treatment could be life-saving. These include hypoxia, hypovolemia, diminished cardiac output secondary to pneumothorax and hypothermia.

E. Mechanism of injury should be considered when deciding resuscitative measures. Generally, trauma arrest resuscitation efforts have statistically low success rates. However, research has shown that penetrating injuries have a higher successful resuscitation rate (11.2%) versus severe blunt injuries (1.6%). If EMS chooses to attempt resuscitation, all measures should be taken including advanced airway, CPR, and appropriate medications. If EMS does not attempt resuscitation, clear documentation as to the criteria used to make this determination is required.

Basic EMT

A. Maintain spinal motion restriction (SMR)

B. Control life-threatening hemorrhage; apply tourniquet and/or hemostatic agent if indicated

C. Begin CPR with consideration of C-Spine; refer to Cardiac Arrest Protocol. Use standard ACLS procedures; CardioCerebral Resuscitation (CCR) does not apply to traumatic cardiac arrest patients.

Advanced EMT / Paramedic

A. Start IV NS to maintain perfusion. Do NOT delay transport to start IV.

B. Treat dysrhythmias – refer to dysrhythmia protocols.

C. Resuscitations should start with oxygenation via a BVM. Subsequent advanced airway insertion should be considered

D. If mechanism of injury/examination makes you suspicious for a tension pneumothorax, perform needle decompression
A. Mass Casualty Incidents (MCIs) are defined as those events that involve more patients and/or more severe injuries than a given Fire/EMS system can manage with the resources currently available.

B. During an MCI, additional resources/mutual aid should be called in by the first responding ambulance. As it may be some time before additional help arrives and a proper Incident Command System (ICS) can be established, the first unit on-scene should begin MCI Field Triage using the Sort, Assess, Life-Saving Interventions, Treatment/Transport (SALT) triage system:

Trauma Triage Protocol

Field Triage

Step 1 – Sort: Global Sorting

- Able to Walk (Assess 3rd)
- Wave/Purposeful Movement (Assess 2nd)
- Not moving/Obvious Life Threat (Assess 1st)

Step 2 – Assess: Individual Assessment

Lifesaving Interventions
- Control Major Bleeding
- Open Airway (if child, consider 2 rescue breaths)
- Needle Chest Decompression
- Auto-injector antidotes

Breathing
- Yes
- No

Dead
- Likely to survive given current resources?
 - Yes
 - No

Immediate

Expectant

Source: Derek R. Cooney: Cooney’s EMS Medicine: www.acesemergencymedicine.com
Copyright © McGraw-Hill Education. All rights reserved.
C. During MCI Triage, emphasis must be placed on doing the greatest good for the greatest number of patients. Time and resources are limited, and thus maximal intervention on each individual patient will be impossible. Engage in secondary triage and frequent patient reassessment after the initial SALT triage of all patients is completed.

DEFINITIONS

A. As used in section 4765.01 of the Ohio Revised Code (ORC), chapter 4765-14 of Ohio Administrative Code (OAC) and in this protocol, “trauma” or “traumatic injury” means severe damage to or destruction of tissue that satisfies both of the following conditions:
 1. It creates a significant risk of any of the following:
 a. Loss of life;
 b. Loss of limb;
 c. Significant, permanent disfigurement;
 d. Significant, permanent disability; and
 2. It is caused by any of the following:
 a. Blunt or penetrating injury;
 b. Exposure to electromagnetic, chemical, or radioactive energy;
 c. Drowning, suffocation, or strangulation;
 d. A deficit or excess of heat.

D. “Trauma patient” or “trauma victim” means a person who has sustained a traumatic injury.

E. “Trauma care” means the assessment, diagnosis, transportation, treatment, or rehabilitation of a trauma victim by emergency medical service personnel or by a physician, nurse, physician assistant, respiratory therapist, physical therapist, chiropractor, occupational therapist, speech-language pathologist, audiologist, or psychologist licensed to practice as such in this state or another jurisdiction.

F. “Trauma center” means all of the following:
 1. Any hospital that is verified by the American college of surgeons as an adult or pediatric trauma center;
 2. Any hospital that is operating as an adult or pediatric trauma center under provisional status pursuant to section 3727.101 of the ORC;
 3. Any hospital in another state that is licensed or designated under laws of that state as capable of providing specialized trauma care appropriate to the medical needs of the trauma patient.

G. “Evidence of poor perfusion” means physiologic indicators of hemorrhage or decreased cardiovascular function, which may include any of the following symptoms:
 1. Weak, distal pulse;
 2. Pallor;
 3. Cyanosis;
 4. Delayed capillary refill;
 5. Tachycardia

H. “Evidence of respiratory distress or failure” means physiologic indicators of decreased ventilatory function, which may include any of the following symptoms:
 1. Stridor;
 2. Grunting;
 3. Retractions;
 4. Cyanosis;
 5. Hoarseness;
 6. Difficulty speaking.
I. “Evidence of hemorrhagic shock” means physiologic indicators of blood loss that may include any of the following symptoms:
 1. Delayed capillary refill;
 2. Cool, pale, diaphoretic skin;
 3. Decreased systolic blood pressure with narrowing pulse pressure;
 4. Altered level of consciousness.

J. “Seatbelt sign” means abdominal or thoracic contusions and abrasions resulting from the use of a seatbelt during a motor vehicle collision.

K. “Signs or symptoms of spinal cord injury” means physiologic indicators that the spinal cord is damaged, including, but not limited to, paralysis, weakness, numbness, or tingling of one or more extremities.

L. “Evidence of neurovascular compromise” means physiologic indicators of injury to blood vessels or nerves including, but not limited to, pallor, loss of palpable pulses, paralysis, paresthesias, or severe pain.

M. “Body region” means a portion of the trauma victim’s body divided into the following areas:
 1. Brain;
 2. Head, face, and neck;
 3. Chest;
 4. Abdomen and pelvis;
 5. Extremities;

N. “Evidence of traumatic brain injury” means signs of external trauma and physiologic indicators that the brain has suffered an injury caused by external forces including, but not limited to:
 1. Decrease in level of consciousness from the victim’s baseline;
 2. Unequal pupils;
 3. Blurred vision;
 4. Severe or persistent headache;
 5. Nausea or vomiting;
 6. Change in neurological status.

Emergency medical services personnel shall use the criteria in this rule, consistent with their certification, to evaluate whether an injured person qualifies as an adult trauma victim, geriatric trauma victim, or pediatric trauma victim, in conjunction with the definition of trauma in section 4765.01 of the ORC and chapter 4765-14 of the OAC.

A. **An Adult trauma victim** is a person between the ages of sixteen and sixty-nine years of age inclusive exhibiting one or more of the following physiologic or anatomic conditions:
 1. Physiologic Conditions:
 a. Glasgow Coma Scale less than or equal to 13;
 b. Loss of consciousness more than five minutes;
 c. Deterioration in level of consciousness at the scene or during transport;
 d. Failure to localize pain;
 e. Respiratory rate less than 10 or greater than 29;
f. Requires endotracheal intubation;
g. Requires relief of tension pneumothorax;
h. Pulse rate greater than 120 in combination with evidence of hemorrhagic shock;
i. Systolic blood pressure less than 90, or absent radial pulse with carotid pulse present;

2. Anatomic Conditions (the same for all ages):
 a. Penetrating trauma to the head, neck, or torso;
 b. Significant penetrating trauma to extremities proximal to the knee or elbow with evidence of neurovascular compromise;
 c. Injuries to the head, neck, or torso where the following physical findings are present:
 d. Visible crush injury;
 e. Abdominal tenderness, distention, or seatbelt sign;
 f. Pelvic fracture;
 g. Flail chest;

3. Injuries to the extremities where the following physical findings are present:
 a. Amputations proximal to the wrist or ankle;
 b. Visible crush injury;
 c. Fractures of two or more proximal long bones;
 d. Evidence of neurovascular compromise.
 e. Signs or symptoms of spinal cord injury;
 f. Second degree (partial thickness) or third degree (full thickness) burns greater than 10% total body surface area, or other significant burns involving the face, feet, hands, genitalia, or airway.

B. A Pediatric trauma victim is a person under sixteen years of age exhibiting one or more of the following physiologic or anatomic conditions:

1. Physiologic Conditions:
 a. Glasgow Coma Scale less than or equal to 13;
 b. Loss of consciousness greater than 5 minutes;
 c. Deterioration in level of consciousness at the scene or during transport;
 d. Failure to localize pain;
 e. Evidence of poor perfusion or evidence of respiratory failure or distress.

C. A Geriatric Trauma Victim is a person 70 years of age or older exhibiting one or more of the following causes on injury or physiologic or anatomic conditions:

1. Physiologic Conditions:
 a. Glasgow Coma Scale less than or equal to 14 in a trauma patient with a known or suspected traumatic brain injury;
 b. Glasgow Coma Scale less than or equal to 13;
 c. Loss of consciousness greater than 5 minutes;
 d. Deterioration in level of consciousness at the scene or during transport;
 e. Failure to localize pain;
 f. Respiratory rate less than 10 or greater than 29;
 g. Requires endotracheal intubation;
 h. Requires relief of tension pneumothorax;
 i. Pulse rate greater than 120 in combination with evidence of hemorrhagic shock;
 j. Systolic blood pressure less than 100, or absent radial pulse with carotid pulse present.

2. Anatomic Conditions – see A. 2. Anatomic Conditions listed for the Adult Trauma Victim, plus the following:
a. Fracture of one proximal long bone sustained as a result of a motor vehicle crash;
 b. Injury sustained in two or more body regions.

3. Cause of injury:
 a. Pedestrian struck by a motor vehicle;
 b. Fall from any height, including standing falls, with evidence of a traumatic brain injury.

D. Emergency medical service personnel shall also consider mechanism of injury and special considerations, as taught in the EMT training curriculum when evaluating whether an injured person qualifies as a trauma victim.

EXCEPTIONS TO MANDATORY TRANSPORT
4765-14-05 of the OAC

A. Emergency medical service personnel shall transport a trauma victim, as defined in section 4765.01 of the ORC, chapter 4765-14 of the OAC and this protocol, directly to an adult or pediatric trauma center that is qualified to provide appropriate adult or pediatric care, unless one or more of the following exceptions apply:
 1. It is medically necessary to transport the victim to another hospital for initial assessment and stabilization before transfer to an adult or pediatric trauma center;
 2. It is unsafe or medically inappropriate to transport the victim directly to an adult or pediatric trauma center due to adverse weather or ground conditions or excessive transport time;
 3. Transport the victim to an adult or pediatric trauma center would cause a shortage of local emergency medical service resources;
 4. No appropriate adult or pediatric trauma center is able to receive and provide adult or pediatric trauma care to the trauma victim without undue delay;
 5. Before transport of a patient begins, the patient requests to be taken to a particular hospital that is not a trauma center or the patient is less than 18 years of age or is unable to communicate, such a request is made by an adult member of the patient’s family or a legal representative of the patient.

If a trauma patient is not transported directly to an appropriate and qualified trauma center, you MUST document which of the above exceptions apply.
URGENT PATIENT
- Maintain C-spine
- Control life-threatening hemorrhage – apply tourniquet and/or hemostatic agent if indicated
- Assess and manage airway
- Maintain O2 SATs >95%
- Perform rapid trauma assessment to find additional life and/or limb-threatening injuries.
- Transport immediately (ALS intercept when available)
- Monitor vital signs
 - Hypoperfusion (BP < 90 MMHG systolic)
- Obtain medical history
- Splint fractures if time permits
- Reassure patient
- Reassess interventions

NON-URGENT PATIENT
- Maintain C-spine
- Assess and manage airway
- Maintain O2 SATs >95%
- Control hemorrhage by appropriate methods
- Perform focused exam on injured area
- Splint fractures
- Monitor vital signs
 - Hypoperfusion (BP < 90 MMHG systolic)
- Obtain medical history
- Reassure patient
- Reassess interventions
- Transport

See specific injuries table for management of specific injuries and refer to shock protocol

TRANEXAMIC ACID (TXA)

Indications for TXA use in trauma patients:
- Adult patient => 16 years old
- Evidence of marked blood loss
- Persistent HR > 110 BPM despite 500 mL NS IVFS, or...
- Persistent BPSYS < 90 MMHG despite 500 mL NS IVFS
- Major trauma with clear abdominal/pelvic injury
- Arterial trauma with clear abdominal/pelvic injury

Dosage:
- Administer 1 gram/100ml IV piggyback over 10 minutes.
- Administration can be completed in the emergency department.
- 250ml normal saline can be used if 100 ml bag not available

PEDIATRIC HYPOTENSION DEFINITIONS
- Patient => 10 yo: BPSYS < 90 MMHG
- Kids 1-9 yo: BPSYS < 70 + (2 x yrs)
- Infants (1mo-1yr): BPSYS < 70
- Neonates (< 1mo): BPSYS < 60

IV NS (run to maintain perfusion)
- Monitor ECG
- Consider pain management protocol
- Consider tranexamic acid (TXA) protocol
SPINAL MOTION RESTRICTION

C-SPINE CONTROL IS USED IN ALMOST ALL NON-ISOLATED TRAUMA.

MECHANISM OF INJURY ALONG WITH CLINICAL PRESENTATION WILL HELP DICTATE THE NEED FOR SPINAL MOTION RESTRICTION. IF ANY DOUBT EXISTS, THEN SPINAL MOTION RESTRICTION IS INDICATED AND SHOULD BE PERFORMED.

APPLY MANUAL C-SPINE CONTROL FOR ANY MECHANISM OF INJURY (MOI) FOR SPINE TRAUMA

SIGNIFICANT MOI
- MULTIPLE TRAUMA
- MVC WITH EJECTION
- LONG FALLS
- DIRECT SPINAL INJURY

SPINAL MOTION RESTRICTION REQUIRED

QUESTIONABLE MOI
- MVC
- FALLS
- VIOLENCE

MINIMAL MOI – LOW OR NO ENERGY APPLIED TO PATIENT

SPINAL MOTION RESTRICTION NOT REQUIRED

C/O NECK PAIN OR NECK PAIN ON PALPATION

AGE > 65

UNRELIABLE EXAM DUE TO:
- ALTERED LOC
- HEAD INJURY
- DRUG OR ALCOHOL USE
- DISTRACTING INJURY
- LANGUAGE BARRIER

DEFICITS IN NEURO EXAM (PULSE, MOTOR, SENSORY)

YES

ANY DOUBT

NO
ABDOMINAL PAIN / NAUSEA VOMITING

- Assess and manage airway
- Maintain O2 SATS >95%
- Evaluate patient condition and determine burn type
 - **Thermal**: Stop burning process, remove from heat source, cool skin, remove clothing (prevent shivering) cover burn areas with dry dressing.
 - **Radiation**: Treat like thermal burns (if burn is contaminated with radioactive source treat as chemical burn) wear appropriate PPE and contact HAZMAT.
 - **Chemical**: Wear appropriate PPE, remove patient from source to decon area, determine chemical involved, remove clothing and flush skin, leave contaminated belongings on scene and transport. If available bring MSDS.
 - **Electrical**: Shut down electrical source, assess for entrance and exit wounds - treat as thermal burns, assess for internal injury.
 - **Inhalation**: Always suspect inhalation burns when patient found in closed, smoky environment, burns to neck or face, singed nasal hairs, cough, stridor, or soot in sputum, provide 100% oxygen.
- Monitor vital signs
 - Hypoperfusion (BP < 90 MMHG systolic)
- Obtain medical history
- Reassure patient
- Transport

Burn Severity

- **Minor Burn** -
 - <70% superficial burn
 - <10% partial thickness burn
 - <2% full thickness burn*

- **Moderate Burn** -
 - >70% superficial burn
 - 10-30% partial thickness burn*

- **Critical Burn****-
 - >30% partial thickness burn
 - >2% full thickness burn
 - Any burns with trauma
 - Any burns with face, hands, feet, and/or genitalia

*Only if hands, face, feet, or genitalia are not involved.

**Patients who have sustained critical burns should be transported directly to a burn center unless they also meet criteria for major trauma/are a “trauma alert” patient, in which case they should be transported to the trauma center first.

Key

- **Basic**
- **Intermediate**
- **Paramedic**
- **Med Control**

Burn Verity

- **Minor Burn** -
 - <70% superficial burn
 - <10% partial thickness burn
 - <2% full thickness burn*

- **Moderate Burn** -
 - >70% superficial burn
 - 10-30% partial thickness burn*

- **Critical Burn****-
 - >30% partial thickness burn
 - >2% full thickness burn
 - Any burns with trauma
 - Any burns with face, hands, feet, and/or genitalia

*Only if hands, face, feet, or genitalia are not involved.

**Patients who have sustained critical burns should be transported directly to a burn center unless they also meet criteria for major trauma/are a “trauma alert” patient, in which case they should be transported to the trauma center first.
• MAINTAIN C-SPINE
• CONTROL LIFE-THREATENING HEMORRHAGE – APPLY Tourniquet AND/OR HEMOSTATIC AGENT IF INDICATED
• BEGIN CPR AND REFER TO CARDIAC ARREST PROTOCOL
• TRANSPORT

• IV NORMAL SALINE – ADMINISTER FLUID BOLUSES OF 20 ML/KG TO MAINTAIN PERFUSION
• MONITOR ECG

• REFER TO DYSRHYTHMIA PROTOCOLS AS INDICATED.
Measure vital signs and level of consciousness

Pediatric
- GCS <=13
- Failure to localize pain
- Ing level of consciousness
- Loss of consciousness >5 mins
- Poor perfusion
- Resp distress/failure
- Resp <20, age <1

Adult
- GCS <=13
- Failure to localize pain
- Ing level of consciousness
- Loss of consciousness >5 mins
- Sys B/P <90
- Pulse >120 w/shock
- Resp <10 or >29
- Tension PTX
- Needs ventilatory support

Geriatric
- GCS <=14
- Failure to localize pain
- Ing level of consciousness
- Loss of consciousness >5 mins
- Sys B/P <100
- Pulse >120 w/shock
- Resp <10 or >29
- Tension PTX
- Needs ventilatory support

Assessment of Anatomy of Injury

All Ages
- Penetrating inj to head/neck/torso
- Crush inj of head/neck/torso
- Flail chest
- Abd tenderness/distention/seatbelt sign
- Pelvic fx
- Spinal cord inj
- Penetrating inj proximal to knee/elbow w/neurovasc compromise
- Amputation proximal to wrist/ankle
- Crush of arm/leg
- 2 humerus/femur fx
- Arm/leg inj w/ neurovasc compromise
- 2/3 burns >10% TBSA
- Sig burns of face/feet/hands/genitals/airway
- Open skull fx (Geriatric only)
- MVC w/ 1 humerus/femur fx
- Inj of 2 or more body regions

Consider Special Circumstances**

- These may include:
 - Falls >20’ (10’ or 2-3 x body ht. for peds)
 - Motorcycle crash >20mph
 - High-risk auto crash:
 - Ejection
 - Death in same compartment
 - Vehicle telemetry data shows high risk of injury
 - Auto vs. pedestrian/bicycle: thrown, run over, >20mph
 - Co-morbid conditions:
 - Pregnant
 - Bleeding disorder or anticoagulants
 - Dialysis
 - Diabetes
 - Immune compromised

When in doubt, transport to a trauma center!